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Abstract
We use molecular dynamics computer simulations to study the relaxation
dynamics of Na2O–2(SiO2) in its molten, highly viscous state. We find that at
low temperatures the incoherent intermediate-scattering function for Na relaxes
about 100 times faster than the one of the Si and O atoms. In contrast to this,
all coherent functions relax on the same timescale if the wavevector is around
1 Å−1. This anomalous relaxation dynamics is traced back to the channel-like
structure for the Na atoms that have been found for this system. We find that the
relaxation dynamics for Si and O as well as the time dependence of the coherent
functions for Na can be rationalized well by means of mode-coupling theory.
In particular, we show that the diffusion constants as well as the α-relaxation
times follow the power law predicted by the theory and that in the β-relaxation
regime the correlators obey the factorization property with a master curve that
is described well by a von Schweidler law. The value of the von Schweidler
exponent b is compatible with the one found for the above-mentioned power law
of the relaxation times/diffusion constants. Finally, we study the wavevector
dependence of fs(q) and f (q), the coherent and incoherent non-ergodicity
parameters. For the Si and O atoms these functions look qualitatively similar to
the ones found for simple liquids and pure silica, in that the coherent function
oscillates (in phase with the static structure factor) around the incoherent one
and in that the latter is approximated well by a Gaussian function. In contrast
to this, f (q) for Na–Na is always smaller than fs(q) for Na and the latter can
be approximated by a Gaussian only for relatively large q .

1. Introduction

In the last two decades our understanding of the structural and dynamical properties of glass-
forming liquids has increased impressively [1–4]. This progress is due to significant advances in
various experimental techniques (light and neutron scattering, dielectric measurements, etc), to
the development of new theoretical approaches and concepts (mode-coupling theory (MCT),
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landscapes, etc) [5–8], and, last but not least, to the extraordinary advances that computer
simulations have made [9–13]. The result of all these efforts is a widely accepted picture on
the relaxation dynamics of glass-forming liquids: at high temperatures this dynamics is that of
a normal liquid and hence the typical time correlation functions decay exponentially in time
and the T -dependence of the typical relaxation times τ (T ) shows an Arrhenius law. (Note that
although there is a well developed theoretical machinery to describe the static properties of
such liquids [14], an accurate understanding of the dynamics is still lacking.) With decreasing
temperature the dynamics changes in that time correlation functions are no longer exponential
and the T -dependence of the relaxation times is often super-Arrhenius. In the past it has
been shown that the slow dynamics observed in this temperature range can be rationalized
very well by means of the so-called MCT of the glass transition, and that often this theory is
able to describe this dynamics not only qualitatively but even quantitatively [5, 15–21]. If the
temperature is decreased even further the relaxation times increase very quickly and typically
show an Arrhenius dependence on T with an activation energy that is larger than the one
found at higher temperatures. The details of the dynamics in this temperature range are not
understood very well and also there exists no satisfactory theoretical description for it.

The presence of the three above-mentioned regimes in τ (T ) (Arrhenius, super-Arrhenius,
Arrhenius) is the typical behaviour found in the so-called ‘fragile’ glass-forming liquids [22],
which include polymers, most molecular glass-formers, and simple liquids. In contrast to
this, the so-called ‘strong’ glass-forming liquids (typical examples include silica and many
other oxide glasses) follow over the whole accessible temperature range an Arrhenius law,
i.e. no super-Arrhenius temperature dependence is found. Since it is one of the main
achievements of MCT to rationalize this super-Arrhenius T -dependence, it was believed for
quite some time that the theory is not very useful for such glass-formers. In recent computer
simulations it was shown, however, that most models for strong glass-forming liquids exhibit
at sufficiently high temperatures deviations from the Arrhenius law found at intermediate and
low temperatures [23–28] and that in the temperature range in which these deviations are seen
the relaxation dynamics can be described very well by MCT [25, 29, 30], in agreement with
the results of some experiments [31, 32]. Therefore one can conclude that this theory is able
to describe not only fragile glass-formers, but also many of the properties of intermediate and
strong ones.

The results discussed so far concern systems in which the dynamics of all atomic species
occurs on roughly the same timescale. There are, however, large classes of materials in which
this is not the case. For example, in superionic glass-formers, such as Na2O–xSiO2 or mixed
alkali glasses such as 0.5Na2O–0.5K2O–3SiO2, the alkali atoms move on a timescale which
at low temperatures is many orders of magnitude faster than that for the atoms constituting
the matrix (here Si and O) [33–38]. To what extent MCT is able to rationalize the very
heterogeneous dynamics of these types of glass-forming system is at present unknown,
although recently evidence has been found that certain aspects of the relaxation dynamics
can indeed be understood by means of the theory [39]. The goal of the present paper is
therefore to carry out a detailed investigation of the relaxation dynamics of a prototype of
such an ion-conducting glass-former, Na2O–2SiO2, and to see to what extent the predictions
of MCT regarding the dynamics of glass-forming liquids hold. Note that although so far there
has been no test of MCT for these systems, computer simulations have already been used for
a long time to study such ion-conducting materials. Seminal work on this goes back more
than twenty years to Soules et al [40] who studied the structure of sodium disilicate and to
Angell et al [41, 42] who looked at certain aspects of the diffusion dynamics. These early
investigations were more recently followed up by similar studies on related systems and also
many experimental investigations [43–63].
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A further interesting feature of these systems is that the distribution of the alkali ions
in the SiO2 matrix is not completely uniform but instead forms an interconnected network
of small pockets and filaments [34, 43, 48, 52, 61]. Although for a long time there was no
direct experimental evidence for the presence of these structures, recent neutron scattering
experiments of Meyer et al on Na2O–2SiO2 showed a structural feature at a wavevector
q ≈ 0.9 Å−1 [64], in excellent agreement with the results from computer simulations that
could attribute this peak to the presence of the above-mentioned network [39, 65, 66]. How
the presence of these channels affects the relaxation dynamics is, however, so far not known
and therefore the present paper is also a contribution to gaining insight into this matter.

The remainder of the paper is organized as follows. In the next section we will describe
the model used for the simulations as well as giving their details. The following section is then
devoted to the presentation of the results and in the final section we summarize and discuss
them.

2. Model and details of the simulation

The force field used in the present work is a modification of the one proposed by Kramer et al
to describe zeolites [67], i.e. crystalline materials that contain also Si, O and Na. This potential
had the functional form

φδε(r) = qδqεe2

r
+ Aδε exp(−Bδεr) − Cδε

r6
δ, ε ∈ [Si, Na, O], (1)

where r is the distance between two atoms of types δ and ε. The parameters Aδε , Bδε , and Cδε

can be found in [67]. Note that qδ is an effective charge with values qSi = 2.4 and qO = −1.2.
In [67] the effective charge of the sodium atoms was chosen to be qNa = 1.0, which has the
disturbing effect that Na2O is not neutral. Hence we changed the potential of [67] somewhat,by
assigning to the Na atom an effective charge qNa = 0.6 [66]. This change of the charge affects
of course the local structure and therefore we have added to φδε(r) a term which compensates
for this change at short distances. Hence the potential that we used in our simulation is given by

�δε(r) = φδε(r) +
q̃δq̃εe2

r
[1 − (1 − δδNa)(1 − δεNa)]�(rc − r) (2)

with q̃Si = 2.4, q̃O = −1.2, and q̃Na = 0.6 ln[C(rc − r)2 + 1]. (Here � is the usual Heaviside
function.) The parameters C = 0.0926 Å−2 and rc = 4.9 Å were chosen such that at ambient
pressure the resulting structure is in good agreement with the experimental results from neutron
scattering [66]. Thus the potential �δε(r) used in the present work is at short distances very
similar to the one proposed by Kramer et al and is at large distances (where the effective
charges are screened) modified such that all systems of the form Na2O–xSiO2 are neutral.

In previous studies it has been shown that this potential is able to reproduce many structural
properties of Na2O–xSiO2, with x = 2, 3, 4, and also certain aspects of the relaxation dynamics
of this model are in good qualitative agreement with experiments [39, 61, 65, 66, 68]. Although
it cannot be expected that such a simple model will be able to reproduce faithfully all the features
of the relaxation dynamics of the real material, it can be expected that the salient properties
will at least be correct from a qualitative point of view.

In the present simulation we integrated the equations of motion using the velocity form
of the Verlet algorithm with a time step of 1.6 fs. At each temperature we first equilibrated the
system by coupling it to a stochastic heat bath. This equilibration time exceeded the structural
relaxation time of the silicon atoms (measured by means of the incoherent intermediate-
scattering function for a wavevector 1.7 Å−1, which corresponds to the length scale of the
distance between two tetrahedra; see below). Subsequently we started a production run in the
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NV E ensemble using a density of 2.37 g cm−3 which is close to the experimental value [69].
The number of particles was 8064 (NSi = 1792, NO = 4480, NNa = 1792) in a cubic
simulation box of size L = 48.653 Å. So large a system size is needed if one wants to avoid
finite-size effects in the relaxation dynamics [70, 71]. In addition, previous simulations have
shown that sodium silicate glasses have structural features that extend over 6–8 Å [39, 52, 61]
and therefore also this calls for rather large system sizes. The temperatures investigated were
4000, 3400, 3000, 2750, 2500, 2300, and 2100 K. At the lowest temperature the length of the
production run was 1.5 million time steps, which corresponds to 2.5 ns. In order to improve
the statistics of the results we did at each temperature two completely independent runs.

3. Results

The main quantities of interest in the present paper are F(q, t) and Fs(q, t), the coherent
and incoherent intermediate-scattering functions for wavevector q. (Note that for isotropic
systems, like the one studied here, these space-time correlation functions depend only on q ,
the modulus of q, i.e. there is no directional dependence. Therefore we have made use of this
fact also in the analysis of our data and have averaged over all wavevectors with the same
modulus.) These two observables are not only of great theoretical interest [14], but certain
linear combinations can also be measured in neutron scattering experiments [72]:

Fδε (q, t) = 1

N

Nδ∑

j=1

Nε∑

k=1

〈exp[iq · (r j(t) − rk(0))]〉 (3)

Fδ
s (q, t) = 1

N

Nδ∑

j=1

〈exp[iq · (r j(t) − r j (0))]〉. (4)

Here r j (t) is the position of particle j at time t , Nδ is the number of atoms of type δ, and N
is the total number of atoms.

In [66] we have shown that in NS2 the partial structure factors SSiSi(q), SSiO(q), and
SOO(q) have two pre-peaks: one at q1 ≡ 0.94 Å−1 and a second one at q2 ≡ 1.7 Å−1. (The
‘main’ peaks, corresponding to the length scale of a nearest-neighbour pair of Si–O and Na–O,
are at ≈2.8 and ≈2.1 Å−1, respectively.) The peak at q2 is related to the distance between
neighbouring tetrahedra and thus corresponds to the so-called ‘first sharp diffraction peak’
in pure silica. The peak at q1 has recently been shown to be related to the typical distance
between the channels mentioned in the introduction [39]. Unfortunately, due to cancellation
effects in the partial structure factors (weighted with the appropriate experimental neutron
scattering cross-sections) it is hard to see this peak in a neutron scattering experiment done
at room temperature [64, 66, 73]. However, the recent neutron scattering studies of Meyer
et al have shown that this system shows at high temperatures, i.e. above T ≈ 1200 K which is
well above the glass transition temperature [69], a feature in the elastic signal at a wavevector
around 0.9 Å−1, i.e. very close to q1 [64]. Thus we conclude that this structural feature is not
only seen in the present model for NS2, but can be found in the real material as well. In the
following we will demonstrate that these structural features also have a strong influence on the
relaxation dynamics of the system.

In figure 1 we show the time dependence of the incoherent intermediate-scattering function
for all temperatures investigated. We see that at high temperatures the relaxation of the structure
is relatively fast in that the correlation function decays, after the microscopic timescale which
lasts around 0.2 ps, basically exponentially. From this graph we also recognize that at these
temperatures this decay is about a factor of four faster for the sodium atoms than the one for the
silicon atoms, and about a factor of three faster than the one for the oxygen atoms. This is in
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Figure 1. Time dependence of the incoherent intermediate-scattering function for Si, Na, and O
(top to bottom) for all temperatures investigated and a wavevector q = q2 = 1.7 Å−1. The dashed
curves are fits to the curve for T = 2100 K with a KWW law.

agreement with the values for the diffusion constants which at this temperature show the same
dependence on the species [66]. At low temperatures the correlators have a time dependence
that differs qualitatively from the one at high T in that they show a plateau at intermediate
times. This plateau is related to the fact that on this timescale the particles are trapped by their
surrounding neighbours (a behaviour which is often called a ‘cage effect’) and hence the time
correlation function changes only slowly. Only for relatively large times are the particles able
to leave this (temporary) cage and hence the correlators finally decay to zero. It is customary
to call the dynamics in the time window in which the correlators are close to the plateau the
‘β-relaxation’ whereas the second relaxation step is called the ‘α-relaxation’. From the figure
we see that at low temperature, τ (q) (the timescale for the α-relaxation) for the sodium atoms is
about a factor of 30 smaller than the one for the oxygen atoms and about a factor of 100 smaller
than the one for silicon. Hence we conclude that the temperature dependence of τ depends on
the species; this is also in agreement with the one found for the diffusion constant [66]. Below
we will discuss this dependence in more detail.

Also included in the figure is a fit to the curves at the lowest temperatures with a
Kohlrausch–Williams–Watts (KWW) law, i.e. Fδ

s (q, t) = Aδ exp(−(t/τδ)
β) (dashed curves).

We see that this functional form is able to describe the data very well in the α-relaxation regime,
as is usually the case for the relaxation dynamics of glass-forming liquids. The value of the
exponent β is 0.8 for Si and O and 0.47 for Na. Thus we see that the relaxation dynamics
is not very stretched for the atoms making up the matrix whereas it is very stretched for the
network modifier. Below we will come back to a possible interpretation for this low value of
β. (Note that a high value of β for Si and O is in agreement with the observation that in pure
silica also the correlators for these length scales are not very stretched [66]. The presence of
sodium does, however, indeed lower the value of β somewhat.)
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Figure 2. Time dependence of the coherent intermediate-scattering function for the Si–Si (a) and
Na–Na (b) correlations for all temperatures investigated.

Having discussed the species and temperature dependence of Fδ
s (q, t) we now focus on

the coherent function Fδε(q, t), defined in equation (3), since that gives information on how
the overall structure of the system relaxes. The time and temperature dependence of FSiSi(q, t)
and FNaNa(q, t) is shown in figure 2 (the result for the O–O correlation is similar to that for
Si–Si). A comparison of the curves in this figure with the incoherent functions, figure 1, shows
that for the case of silicon the coherent and incoherent functions are very similar in that the
height of the plateau at intermediate times and the typical relaxation times for the α-relaxation
are quite comparable. This is the usual behaviour found for glass-forming systems such as pure
silica, water, or simple liquids [30, 75, 76]. In contrast to this, the time dependence of FNa

s (q, t)
for sodium differs strongly for the coherent function FNaNa(q, t) in that the relaxation time of
the former is about a factor of ten smaller than that of the latter. This shows that the relaxation
dynamics of the sodium atoms has unusual features. In fact it has been shown in [39, 61]
that the motion of a tagged Na atom is relatively fast in that the particles hop between certain
preferential sites (generated by the Si–O matrix). However, the relative spatial arrangement
of the Na particles (i.e. their global structure) does not change under this type of motion and
hence the coherent function decays much more slowly than the incoherent one.

One of the important predictions of MCT is that close to the critical temperature of the
theory the shape of the time correlation functions does not depend on temperature. This means
that a correlator φ(t, T ) can be written as

φ(t, T ) = φ̂(t/τ(T )), (5)

where τ (T ) is the α-relaxation time at temperature T . To what extent this prediction, which is
often called the time–temperature superposition principle (TTSP), holds can easily be tested
by plotting the correlators versus t/τ . For this we have defined the α-relaxation time τ as the
time that it takes the correlator to decay to 0.1. Although this definition (and the value 0.1) is
somewhat arbitrary, it is easy to see that if the TTSP holds, the details of the definition do not
matter. In figure 3 we show the correlators as a function of t/τ for all temperatures investigated.
We see that for silicon and oxygen the TTSP holds basically for the whole T -range if Fs is
smaller than ≈0.3. This is in qualitative agreement with a MCT calculation for a hard-sphere
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Figure 3. The incoherent function Fs (q, t) versus t/τ (T ) for Si, Na, and O (top to bottom). The
α-relaxation time τ (T ) has been defined via Fs (q, τ ) = 0.1. The insets in (a) and (b) show the
same functions at large rescaled times.

system [74]: also in that case the TTSP holds only for values of the intermediate-scattering
function that are smaller than about 0.3 (for a q that is at the structure factor maximum). For
larger values of the correlators one observes systematic deviations from the (asymptotic) TTSP
scaling, the formulae of which can also be calculated within MCT [74].

In the case of sodium we have already shown that its dynamics is very different from
that of Si and O in that, e.g., for FNa

s (q, t) one obtains a very different stretching exponent
β from that for FSi

s and FO
s at a given q . However, for FNa

s (q, t) the TTSP also works for
low temperatures, T � 2500 K. That for this species the TTSP does not hold for higher
temperatures is reasonable, since for T � 2750 K the typical α-relaxation times are still of the
order of a few picoseconds only (see figure 1(b)) and thus the α-relaxation regime is not well
separated from the microscopic dynamics. Note that if one were able to equilibrate the system
at even lower temperatures, the TTSP could be expected to start to break down, since at low T
the dynamics is likely to be dominated by a simple diffusive motion in which the single step is
the breaking of a Si–O bond, a behaviour which has been found in pure silica [25]. Hence one
can expect this to affect also the sodium dynamics and thus the breaking down of the TTSP.

The correlators discussed so far were for q = 1.7 Å−1, the length scale corresponding
to the typical distance between two neighbouring tetrahedra. We now investigate how the
α-relaxation time depends on the wavevector as well as on the particle species. In figure 4 we
show the q-dependence of τ as determined from the incoherent correlators as well as some of
the coherent ones. The temperature is T = 2100 K—thus the lowest temperature at which we
were able to fully equilibrate the system. Since for the case of a diffusive motion the relaxation
time τ (q) of the incoherent function is equal to (Dq2)−1 (D is the diffusion constant), we plot
directly τ (q)q2 which can be understood as an inverse q-dependent diffusion constant. We first
start with the particles forming the matrix, i.e. Si and O. We see that for these elements τ (q)q2
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from the incoherent functions increases weakly with increasing q , goes through a maximum,
and then decreases again at large q . The location of this maximum is around 2.8 Å−1, i.e. at
the wavevector at which the static structure factor has the peak that corresponds to the distance
between neighbouring Si–O. The same type of q-dependence has also been found in the case
of pure SiO2 [30] and it reflects the fact that on this length scale the system is particularly
rigid. The relaxation times of the coherent functions have a more complex q-dependence in
that they oscillate around the τ for the incoherent function. This oscillation is in phase with
the corresponding static structure factor, a feature that is found also in simple liquids [76] as
well as in systems such as pure silica [30] or water [75]. This effect is similar to the so-called
de Gennes narrowing [14], but it has to be emphasized that it appears here in the α-relaxation
regime of a two-step relaxation process and, thus one cannot expect it on the basis of de
Gennes’ simple argumentation that uses sum rules of the short-time expansion of the coherent
intermediate-scattering function.

From the figure we recognize that the largest relaxation time is at a wavevector q ≈
0.95 Å−1, which corresponds to the length scale of the network of channels discussed in [39, 61].
The different chemical ordering of silicon and sodium leads to the presence of an additional
intermediate length scale which is reflected in the dynamics of sodium in that the trajectories
of the sodium atoms are restricted to a network of channels in a Si–O matrix. This network
of channels is reflected in the collective correlations by the slowest relaxation process of our
system, the rearrangement of the channel structure. Finally we remark that for wavevectors
below 0.95 Å−1τ (q)q2 exhibits a very steep increase: we see that in this range of q-values
the curves are very much compatible with a straight line which corresponds to a growth of
the relaxation times like τ (q) ∝ q−2 exp(Aq), where A is a positive constant. Although we
are not aware of any theoretical reason for such a dependence, it seems to describe our data
remarkably well over two decades in τ .

For the sodium atoms the q-dependence of τ is more complicated than that for Si and O.
For the coherent correlators this function is qualitatively similar to the one found for Si–Si
and O–O. In particular we find again a pronounced peak at q ≈ 0.95 Å−1, i.e. the length scale
of the channels. Note that close to this peak also the absolute value of τ is close to the ones
for Si and O, which shows that on this length scale the spatial arrangement of the Na atoms
can only relax if the Si–O matrix relaxes. The relaxation time for the incoherent Na function
behaves very differently. First of all we see that it is significantly smaller than that of the
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coherent function, in agreement with our conclusions from figures 1 and 2. Also this function
increases for small and intermediate wavevectors, shows a maximum at the location of the
corresponding peak in the partial structure factor (included in the figure as well), and then
decreases for even larger q . It is not possible to determine the relaxation times of FNaNa(q, t)
for q > 2.5 Å−1 with our definition Fδε(q, t = τ ) = 0.1 because for large wavevectors,
FNaNa(q, t) has already decayed to values around or lower than 0.1 before the α-relaxation
starts to develop (see figure 8 below). In contrast to that we can determine the relaxation
times for FNa

s (q, t) also for relatively large wavevectors. Since for sufficiently large q one
has Fδ

s (q, t) ≈ Fδδ(q, t), we know that in this limit the relaxation times for Fδδ(q, t) have to
approach the ones for Fδ

s (q, t). This implies that the curve τ (q) for the Na–Na correlation must
start to decrease quickly in order to approach the one for the Na correlation. Hence we expect
for large wavevectors the relaxation times for the Na–Na correlation to become significantly
smaller than that of the matrix. An inspection of the correlation functions shows, however,
that this is not yet the case for wavevectors smaller than 3.5 Å−1.

In an earlier study of pure silica, the paradigm of a ‘strong’ glass-former, we found
the surprising result that the temperature dependence of the diffusion constant as well as
the viscosity show at high temperatures a significant deviation from the expected Arrhenius
law [25]. In that paper it was argued that this deviation can be rationalized by MCT which
predicts the existence of a ‘critical temperature’ Tc close to which the transport coefficients
show a non-Arrhenius behaviour [5]. Since significant deviations from an Arrhenius law have
been observed also for the sodium silicate system investigated here [66], it is reasonable to
investigate to what extent MCT is able to rationalize the relaxation dynamics. The theory
predicts that close to Tc the temperature dependence of the diffusion constants or α-relaxation
times is given by a power law:

D(T ) ∝ (T − Tc)
γ and τ (T ) ∝ (T − Tc)

−γ . (6)

Here γ is a system-universal constant, i.e. it does not depend on what species or wavevector
one considers. In addition, MCT predicts that the value of the exponent γ has a one-to-one
correspondence with the exponent b of the so-called von Schweidler law that is discussed
below. This connection is given by

γ = 1

2a
+

1

2b
with

[
(1 − a)]2


(1 − 2a)
= [
(1 + 2b)]2


(1 + 2b)
, (7)

i.e. the second equation can be used to determine the value of a from b and then the first
equation can be used to calculate γ (here 
(x) is the usual 
-function). In [39] we have shown
that the value of b is around 0.47 (see also figure 6). Hence equations (7) give a value of
γ = 2.87, which can be considered as the theoretical estimate of MCT for the exponent. If
the prediction of the theory for the power law and the value of the exponent is correct, a plot
of τ−1/γ (or D1/γ ) versus T should give a straight line. A plot of this type is shown in figure 5
for the relaxation times τ (q) for the wavevectors q = 0.94 and 1.7 Å−1 as well as the diffusion
constants (which were determined from the long-time limit of the mean squared displacement
of a tagged particle [66]). Note that we have not included the data for Na, since, as shown
in [66], the diffusion constant for Na follows an Arrhenius law in the whole temperature range,
and hence the power laws given by equation (6) certainly do not hold for this species. We
see that all the curves do indeed show a straight line in a temperature interval that is quite
substantial. Linear fits in this region are included in the graph as well (solid lines). It is quite
remarkable that this type of plot rectifies the data for the diffusion constant for the Si as well
as those for O, since for binary systems it is often found that the more mobile species has an
exponent γ that is smaller than the one for the less mobile species (see, e.g., [76, 84]). This
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Figure 5. A test for the presence of a power law for the relaxation times τ (q) for Si and O and
two wavevectors. Also included are the data for the diffusion constants DSi and DO, which for the
sake of producing a clearer presentation have been multiplied by 35. The bold straight lines are
linear fits show the prediction of MCT.
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Figure 6. Time dependence of the incoherent intermediate-scattering function for oxygen at
T = 2100 K. The solid curves are FO

s (q, t) for different wavevectors (see the labels). The dotted
curves are fits with a von Schweidler law, the first term in equation (8), with an exponent b = 0.47.
The dashed curves are fits with the von Schweidler law including the leading-order corrections (see
equation (8)).

observation might tentatively be taken as evidence that the relaxation dynamics of the present
system (as measured by the Si and O atoms) is quite homogeneous.

Furthermore, we see from the graph that the extrapolation of these straight lines to lower
temperatures intersects the T -axis at a point, the critical temperature Tc, which depends only
weakly on the quantity considered, and which is around 2000 K. Hence we conclude from this
figure that the relaxation times and diffusion constants for Si and O do indeed show the predicted
power-law dependence with a common exponent γ and a common critical temperature Tc.
Finally, we note that in the temperature interval in which τ and D show this power law these
quantities change by about two orders of magnitude and hence the existence of the power laws
is not just a trivial matter. Note that although MCT predicts that at Tc the relaxation times
should diverge, in reality this is not found. The reason for this is that once the relaxation
times have increased beyond a certain value, for atomic systems, usually times of the order
of 10 ns, the system starts to relax via processes that currently can be taken into account by
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the theory only in a schematic way. Despite the presence of these processes, usually called
‘hopping processes’, the theory is still able to make predictions on the relaxation dynamics on
the timescale of the β-relaxation. For more details we refer the reader to [5, 77]. The presence
of these hopping processes for the present system can be inferred from figure 5, in that the data
points for T � 2600 K are above the theoretical straight lines, i.e. the relaxation is faster than
predicted from the power law.

Having discussed the relaxation dynamics of the system in the α-regime, we now turn our
attention to the β-regime, i.e. the time window in which the correlators are close to the plateau
(see figure 1). The late β-regime can be understood as the short-time regime of the α-relaxation,
i.e. the regime where the density correlator starts to decay from the plateau value to zero. Within
MCT the short-time expansion of the α-relaxation master function in equation (5) is known
and yields the following formula for the intermediate-scattering functions [74]:

�(q, t) = fc(q) − hc(q)(t/τ)b + h2(q)(t/τ)2b. (8)

Here �(q, t) stands for the different coherent and incoherent intermediate-scattering functions.
fc(q) is the height of the plateau, also called the non-ergodicity parameter, and hc(q) is the
so-called critical amplitude that depends, like the amplitude h2(q), only on q (as well as on
the species). The first power law of equation (8) is often called the ‘von Schweidler law’ and
the exponent b the ‘von Schweidler exponent’. Note that the theory predicts that the value of
b should be the same for all correlators (i.e. independent of the value of q). In figure 6 we
show the time dependence of the incoherent intermediate-scattering function for the oxygen
atoms for various wavevectors (at T = 2100 K). Also included are fits with the functional form
given by equations (8) using the height of the plateau as a fit parameter. The dotted curves
correspond to a fit in which only the first term on the RHS of equation (8), the von Schweidler
law, is used, whereas the dashed curve is the case where the second term in equation (8) is
also taken into account. In these fits hc(q) and h2(q) were fit parameters that were allowed to
depend on q , whereas the exponent b was a global fit parameter. From the figure we conclude
that the von Schweidler law is indeed able to describe well the dynamics close to the plateau.
Furthermore, we see that the inclusion of the correction term increases the time window for
which this law holds by about a factor of ten in qualitative agreement with the results of such
an analysis for other glass-forming liquids [5, 30, 75, 76]. We also mention that a similar good
fit is obtained for the case of Fs(q, t) for Si. In [39] we showed fits of the same type for the
coherent functions of Si and O and found that for these correlators the late β-regime is also
described very well by the functional form given in equation (8).

We emphasize that a universal exponent b exists only in the late β-relaxation (or short-
time α-relaxation) regime and not for the late α-relaxation. For the latter one finds that the
stretching exponent β, and therefore the shape of the correlator, depends on the species or
the wavevector. In particular, we have discussed in [39] the wavevector dependence of β for
the Na atoms and have shown that for small and intermediate q , q � 1.5 Å−1, β changes
significantly, thus showing that the α-relaxation is indeed not universal from this point of view.

In this context it is, however, very interesting that β(q) for the Na atoms becomes
independent of q for q � 1.6 Å−1 [39], although in this q-range the structure factor SNaNa(q)

still shows pronounced features, i.e., it is not a constant. Such a behaviour was predicted some
time ago by Fuchs, who used MCT to show that limq→∞ β(q) = b, i.e. for large wavevectors
β should converge to the von Schweidler exponent b [79]. We have found that in our case
this is indeed the case, i.e. that for large q the stretching exponent is indeed compatible with
b = 0.47 [39]. Hence this nice agreement between our results and the prediction of MCT shows
that the theory is indeed also able to describe this feature of the relaxation dynamics of the
present system. We also mention that for the case of a hard-sphere system the MCT prediction
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for the independence of β of q holds only for wavevectors that are much larger than the location
of the first peak in the structure factor. The fact that for the present system this asymptotic value
is reached already for quite small wavevectors is thus rather surprising. We note, however, that
a closer inspection of FNa

s (q, t) for q � 1.6 Å−1 shows that the α-relaxation regime of these
correlators falls into the late β-relaxation regime of all the other (slow) correlators in which
the von Schweidler law holds. Thus, it seems that the relaxation processes in the β-regime
of the slow correlators that correspond to the universal von Schweidler decay are impressed
onto the dynamical behaviour of the single-particle motion of the sodium atoms which leads
to stretched-exponential decay of FNa

s (q, t) with β = b. For smaller wavevectors this is not
the case, since there the α-relaxation of FNa

s (q, t) overlaps essentially only with the plateau
of the slow correlators.

The result in figure 6 shows that the time dependence of the correlation functions for the
time regime in which they start to fall below the plateau is compatible with the functional
form given in equation (8). However, there is a more general prediction of MCT for the whole
β-relaxation regime that should hold, as equation (8), close to Tc: the so-called factorization
property. This property is expressed in the following formula:

φ(t) = fc + hφG(t). (9)

In this equation φ(t) denotes any time correlation function that couples to density fluctuations.
Equation (9) is called the factorization property because φ(t) − fc factors into a system-
universal time-dependent function G(t) and a φ-dependent function. (Note that this
factorization property holds also for the case where hopping processes are present [5, 77].)
The time dependence of G(t) is given by the solution of a non-linear equation which can be
solved numerically [5]. A way to check to what extent the factorization property holds, without
making use of the explicit form of G(t), is to calculate the following quantity:

Rφ(t) = φ(t) − φ(t ′)
φ(t ′′) − φ(t ′)

. (10)

Here t ′ and t ′′ are two arbitrary times in theβ-regime. It follows immediately that if equation (9)
holds, Rφ is independent of φ, since it is just the system-universal function G(t). In figure 7
we show the time dependence of Rφ at T = 2100 K. The correlators φ used are Fs(q, t) for Si
and O at q = 0.94 Å−1, q = 1.7 Å−1, q = 2.0 Å−1, and q = 3.0 Å−1, as well as the coherent
functions F(q, t) for Si–Si, Na–Na, and O–O at the same values of q . The times t ′′ and t ′
from equation (10) are 2.9 and 10.3 ps, respectively. From the figure, we recognize that in the
β-regime the Rφ(t) for all these correlators collapse nicely onto a master function, which is
the function G(t). Hence we conclude that the factorization property predicted by MCT holds
for the present system. Finally, we mention that we find for higher temperatures the same type
of collapse, but that the time window in which the master curve is observed shrinks rapidly, in
qualitative agreement with the prediction of MCT.

The last quantity that we will discuss is fc(q) from equation (8). Since fc is just the height
of the plateau of the correlator at intermediate times, this parameter is often also called the
‘non-ergodicity parameter’ (NEP) since it reflects how much memory the system has of its state
at t = 0. In the following we will focus on the wavevector dependence of f δε(q) and f δ

s (q),
the NEP for the coherent and incoherent scattering functions. (Note that f δε(q) and f δ

s (q) are
often also called the Debye–Waller factor and Lamb–Mössbauer factor, respectively.) We have
determined f δε(q) and f δ

s (q) by using equation (8) to fit the correlators. The q-dependences
of f δε(q) and f δ

s (q) for the cases of silicon and oxygen are shown in figure 8. We see that in
both cases f δ

s (q) (open symbols) decays quickly with increasing q and that this dependence
can be described very well by a Gaussian (bold solid curves). Such a behaviour has already
been found for the case of pure silica [66] and is in qualitative agreement with the prediction
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Figure 7. Time dependence of the function Rφ(t), defined in equation (10), at T = 2100 K. The
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incoherent functions.

of MCT [5]. The widths qs of these Gaussians are 4.1 and 3.0 Å−1 for Si and O, respectively.
This means that in the timescale of the β-relaxation the particles are trapped in a cage with
radius rs = 1/qs = 0.24 Å (Si) and 0.33 Å (O). For the case of pure SiO2 the corresponding
values are 0.23 and 0.29 Å [66]. Hence we see that the presence of sodium slightly increases
the size of the cage and that this increase is more pronounced for the case of oxygen than
for silicon. This result is reasonable since some of the oxygen atoms are in the immediate
vicinity of the sodium atoms but are bound to them less strongly than they are to the silicon
atoms (and of course there is no Si–Na bond). In addition, the presence of dangling bonds
(i.e. non-bridging oxygens) will also lead to an increase of the size of the cage for oxygen.

The NEP for the coherent functions of Si and O oscillate around the ones for the incoherent
functions. This oscillation is in phase with the corresponding structure factor, a behaviour
which is in qualitative agreement with the theoretical expectation [5, 78]. In particular, we
see that the amplitude of this oscillation is smaller for the case of silicon than for oxygen, in
agreement with the findings for pure SiO2 [30] and binary mixtures of particles [76]. This
finding can be rationalized by the fact that in a binary system with strong asymmetry in the
concentration, the coherent correlation functions for the minority species are in general very
similar to the incoherent functions.
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Also included in the figure is f δ(q) as determined from the Na correlator. (Note that
FNa

s (q, t) does not show a well defined plateau for q � 1.5 Å−1 (see, e.g., figure 2 in [39]).
Hence a fit with the functional form given by equation (8) is rather difficult if q is large, and thus
the height of the plateau cannot be determined with high accuracy. However, for q � 1.2 Å−1

one does indeed find a well developed plateau and thus it is possible to determine f δ
s (q) with

good accuracy.) From figure 8 we see that f δ
s (q) for Na decays significantly faster than the

ones for Si and O. This can be interpreted by saying that the cage for the sodium atoms is wider
than the one for Si and O. However, care must be taken in drawing this conclusion since, as
just mentioned, at the temperatures investigated neither the intermediate-scattering functions
for intermediate and large q nor the mean squared displacement of the Na atoms show a well
defined plateau at intermediate times. Hence one cannot really say that on this timescale the
particles are caged, and hence also the interpretation of f δ

s (q) as the Fourier transform of the
shape of the cage is not quite appropriate. What is remarkable with f δ

s (q) for Na is the fact that
it is not possible to fit it well with a Gaussian. If one fits the data for q � 2.2 Å−1 with such
a functional form it is possible to obtain a very good fit (bold solid curve). (The width of this
Gaussian is 2.52 Å−1, which corresponds to a ‘cage’ of size 0.39 Å.) However, this fit gives a
very poor representation of the data for smaller wavevectors. This result, which is in contrast
to the findings for Si and O, shows that the dynamics of Na is indeed rather unusual. Roughly
speaking, one can thus say that for small length scales, i.e. large q , the cage is relatively soft
and therefore the f Na

s (q) decays quickly. However, on the length scales of the typical distances
between the channels (small q) the ‘cage’ is relatively rigid, since on this length scale, as we
have mentioned before, the dynamics of Na is strongly coupled to relaxation processes in the
matrix. But of course this is just a hand-waving explanation of the finding and it would be nice
to find support for it by means of a more thorough theoretical calculation. We also mention
that it is not possible to describe the q-dependence of the Na data as the simple sum of two
Gaussians, which shows that this dependence is indeed non-trivial.

Also included in the figure is the NEP for the Na–Na correlation. Qualitatively, this f δε(q)

looks similar to that for the Si–Si or O–O correlation and, in particular, it shows a pronounced
peak at around 2.0 Å−1, which corresponds to the nearest-neighbour distance between two Na
atoms (=3.3 Å) [66]. However, we notice an important difference in that this NEP does not
oscillate around the NEP for the incoherent function, but instead stays systematically below it.
Also, for this behaviour we are not aware of any theoretical prediction or experimental result.

4. Summary

In this paper we have studied by means of molecular dynamics computer simulations the
relaxation dynamics of a melt of Na2O–2SiO2, one of the prototypes of an ion-conducting
glass-former. In particular we investigated the temperature and wavevector dependence of
the coherent and incoherent scattering functions. Due to the very different timescale of the
dynamics of Na compared with that of the species forming the matrix, the q-dependence of
these correlators for the sodium atoms shows features that are neither found in simple liquids
nor in network-forming liquids such as pure silica, i.e. systems in which the dynamics of the
individual species takes place on a comparable timescale. For example, we find that the time
and temperature dependence of the incoherent function for Na is very different from that for
the coherent function. This is related to the fact that in this system the sodium atoms have
the tendency to populate a relatively small subregion of space, so-called channels, and that the
dynamics of the atoms in these channels is relatively quick and occurs by (activated) single-
particle hops. In contrast to this, the overall structure of the channel, and hence the coherent
function for the Na atoms, relaxes only on the timescale of the α-relaxation time of the Si–O
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matrix. The temperature dependence of the relaxation times for the matrix and FNaNa(q, t)
shows a strong deviation from an Arrhenius law in agreement with experimental findings for
this system [80, 81]. In the past such deviations have been found for simple liquids [76, 82–84]
and their existence has been rationalized by means of MCT. However, finding them in systems
such as silica [25, 26] or in the present sodium silicate system is rather surprising. In this paper
we have shown that in the temperature regime where these deviations are seen, many of the
features of the relaxation dynamics can again be rationalized by means of MCT, thus showing
that with respect to this there is no difference from the results found for the so-called fragile
glass-formers. Hence we conclude that the main difference between strong and fragile glass-
formers is that the presence of the hopping processes leads to a shrinking of the dynamical
range in which the T -dependence of the relaxation times follows the power law predicted by
MCT (as compared to the range found in fragile systems). Nevertheless, despite this reduced
range, the time correlation functions still show a behaviour that can be rationalized remarkably
well by the theory.

Of course one has to wonder to what extent the results presented in this paper can be
found also for real Na2O–2SiO2, or similar systems. Although it must be expected that the
potential used is not sufficiently accurate to reproduce all the properties of the real material on
a quantitative level, the surprisingly good agreement of the results of the present model with
the neutron scattering results of Meyer et al [64] shows that the potential is quite realistic.
Therefore, it can be hoped that the results presented here will be found also in appropriate
coherent and incoherent neutron scattering experiments and we hope that the present work
helps to motivate such experiments.

Acknowledgments

We thank A Meyer for useful discussions and the referee for valuable comments on the
manuscript. Part of this work was made possible by the DFG through SFB 262 and
Schwerpunktsprogramm 1055. We thank the HLRZ Stuttgart for a generous grant of computer
time on the CRAY T3E.

References

[1] Ngai K L (ed) 1991 Proc. 1st Int. Discussion Mtg on Relaxations in Complex Systems; J. Non-Cryst. Solids
131–3

[2] Ngai K L (ed) 1994 Proc. 2nd Int. Discussion Mtg on Relaxations in Complex Systems; J. Non-Cryst. Solids
172–4

[3] Ngai K L (ed) 1998 Proc. 3rd Int. Discussion Mtg on Relaxations in Complex Systems; J. Non-Cryst. Solids
235–7

[4] Ngai K L (ed) 2002 Proc. 4th Int. Discussion Mtg on Relaxations in Complex Systems; J. Non-Cryst. Solids at
press

[5] For reviews of the theory and tests of MCT, see, e.g.,
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[53] Richert R and Böhmer R 1999 Phys. Rev. Lett. 83 4337
[54] Sidebottom D L 1999 Phys. Rev. Lett. 83 983
[55] Schroder T B and Dyre J C 2000 Phys. Rev. Lett. 84 310
[56] Maass P, Meyer M, Bunde A and Dieterich W 1996 Phys. Rev. Lett. 77 1528
[57] Porto M, Maass P, Meyer M, Bunde A and Dieterich W 2000 Phys. Rev. B 61 6057
[58] Banhatti R D and Heuer A 2001 Phys. Chem. Chem. Phys. 3 5104
[59] Heuer A, Kunow M, Vogel M and Banhatti R D 2002 Phys. Chem. Chem. Phys. 4 3185
[60] Zotov N 2001 J. Non-Cryst. Solids 287 231
[61] Jund P, Kob W and Jullien R 2001 Phys. Rev. B 64 134303
[62] Yuan X and Cormack A N 2001 J. Non-Cryst. Solids 283 69
[63] Sunyer E, Jund P and Jullien R 2002 Phys. Rev. B 64 214203
[64] Meyer A, Schober H and Dingwell D B 2002 Europhys. Lett. at press
[65] Horbach J and Kob W 1999 Phil. Mag. B 79 1981
[66] Horbach J, Kob W and Binder K 2001 Chem. Geol. 174 87



The structural relaxation of molten sodium disilicate 9253

[67] Kramer G J, de Man A J M and van Santen R A 1991 J. Am. Chem. Soc. 64 6435
[68] Ispas S, Benoit M, Jund P and Jullien R 2001 Phys. Rev. B 64 214206
[69] Mazurin O V, Streltsina M V and Shvaiko-Shvaikovskaya T P 1983 Handbook of Glass Data: Part A. Silica

Glass and Binary Silicate Glasses (Amsterdam: Elsevier)
[70] Horbach J, Kob W, Binder K and Angell C A 1996 Phys. Rev. E 54 R5897
[71] Horbach J, Kob W and Binder K 2001 Eur. Phys. J. B 19 531
[72] Lovesey S W 1986 Theory of Neutron Scattering from Condensed Matter vol 1 (Oxford: Clarendon)
[73] Misawa M, Price D L and Suzuki K 1980 J. Non-Cryst. Solids 37 85
[74] Franosch T, Fuchs M, Götze W, Mayr M R and Singh A P 1997 Phys. Rev. E 55 7153
[75] Sciortino F, Gallo P, Tartaglia P and Chen S H 1996 Phys. Rev. E 54 6331

Sciortino F, Fabbian L, Chen S H and Tartaglia P 1997 Phys. Rev. E 56 5397
[76] Kob W and Andersen H C 1995 Phys. Rev. E 52 4134
[77] Das S P and Mazenko G F 1986 Phys. Rev. A 34 2265
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